Die Photosynthese, bei der das, was jedes Blatt kann - Sonnenlicht in „chemische Energie“ umzuwandeln -, kann auch mit künstlichen Systemen auf Halbleiterbasis erreicht werden. Nun haben Forscher hier einen Effizienzrekord vorgelegt.

Einem internationalen Team ist es gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung jetzt deutlich zu steigern. Sie nutzen dafür eine Tandem-Solarzelle, deren Oberflächen sie gezielt modifizierten. Der neue Bestwert liegt bei 14 % und damit deutlich über dem bisherigen Rekordwert von 12.4 %, der damit seit 17 Jahren erstmals gebrochen wurde.

An der Kooperation sind Forscher von deutschen Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin (HZB), der TU Ilmenau, vom Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg (D) und vom California Institute of Technology beteiligt. Die Ergebnisse wurden in Nature Communications veröffentlicht.

Solarenergie ist zwar weltweit reichlich verfügbar, aber leider nicht stets und überall. Eine besonders interessante Speicherlösung ist die künstliche Photosynthese: Was jedes Blatt kann, nämlich Sonnenlicht in „chemische Energie“ umzuwandeln, das gelingt auch mit künstlichen Systemen auf Halbleiterbasis: dabei spaltet die elektrische Leistung, die Sonnenlicht in einzelnen Halbleiterkomponenten erzeugt, Wasser in Sauerstoff und Wasserstoff auf.

Wasserstoff besitzt eine hohe Energiedichte, ist vielseitig verwendbar und könnte fossile Brennstoffe durchaus ersetzen. Zudem wird bei der Verbrennung von Wasserstoff kein klimaschädliches Kohlendioxid freigesetzt, sondern nur Wasser. Bisher scheitert die Herstellung von „Sonnen-Wasserstoff“ auf industrieller Ebene jedoch an den Kosten. Denn der Wirkungsgrad der künstlichen Photosynthese, also der Energiegehalt des Wasserstoffs bezogen auf den des Lichtes, ist noch immer einfach zu gering, um wirtschaftlich solar erzeugten Wasserstoff zu produzieren.

Die wichtigsten Wissenschaftsstandorte der Welt forschen daher seit vielen Jahren daran, die bestehende Bestmarke für künstliche Photosynthese von 12.4 %, die seit 17 Jahren vom National Renewable Energy Laboratory in den USA gehalten wird, zu knacken. Nun ist es einem Team aus der TU Ilmenau, dem HZB, dem California Institute of Technology sowie dem Fraunhofer ISE gelungen, diesen Rekordwert deutlich zu übertreffen. Erstautor Matthias May, für die TU Ilmenau und das HZB-Institut für Solare Brennstoffe am Wirken, hat in seiner ausgezeichneten Promotionsarbeit dafür knapp hundert Proben bearbeitet und vermessen. Die Grundbausteine sind Tandemsolarzellen aus so genannten III-V-Halbleitern. Mit einem jetzt patentierten photoelektrochemischen Verfahren gelang es May, bestimmte Oberflächen dieser Halbleitersysteme so zu modifizieren, dass sie ihre Funktion bei der Wasserspaltung besser erfüllen.

„Wir haben insbesondere die Aluminium-Indium-Phosphid-Schichten in situ elektronisch wie chemisch passiviert und damit effizient an die Katalysatorschicht für die Wasserstofferzeugung angekoppelt. Dabei konnten wir die Oberflächenzusammensetzung auf der Subnanometerskala kontrollieren“, erklärt May. Auch bei der Langzeitstabilität gelangen riesige Fortschritte: Anfänglich hielten die Proben nur wenige Sekunden durch, bevor ihre Leistung einbrach, nach rund einem Jahr Optimierung, bleiben sie über 40 Stunden lang stabil. Weitere Schritte in Richtung Langzeitstabilität (1000 Stunden als Ziel) sind schon in Vorbereitung.

„Prognosen zeigen, dass die Erzeugung von Wasserstoff aus Sonnenlicht mit Hocheffizienz-Halbleitern ab einer Effizienz von 15% wirtschaftlich konkurrenzfähig zu fossilen Energieträgern werden könnte; dies entspricht einem Preis pro Kilogramm Wasserstoff von etwa vier US-Dollar“, sagt Prof. Thomas Hannappel, Fachgebiet Photovoltaik an der TU Ilmenau, der die Arbeit mit betreut hat. Und Prof. Hans-Joachim Lewerenz vom Joint Center for Artificial Photosynthesis aus dem California Institute of Technology, der eng mit May zusammen gearbeitet hat, sagt: „Da sind wir nun schon nah dran. Wenn es uns nun gelingt, die Ladungsträger-Verluste an den Grenzflächen noch etwas stärker zu reduzieren, könnten wir mit diesem Halbleitersystem sogar über 17 % der einfallenden Solarenergie chemisch in Form von Wasserstoff speichern.“

Quelle

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14294&sprache=de&typoid=49880

 

 

 

22.09.2015 | 9841 Aufrufe

Kommentare

Avatar
Sicherheitscode